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ON THE SHOCK POLARS IN A GAS WITH GENERAL 

V.M. THSHUKOV 

EQUATIONS OF STATE* 

Media with equations of state more general than those for a polytropic gas 
(satisfying the conditions of a normal gas /l/) are considered. Additional 
conditions are derived ensuring properties of the shock polars analogous 
to those studied in depth for the case of a polytropic gas /2/. 

1. Formulation of the problem. The equations of state of a gas are given in the 
form e= e(u,p), p = g(v, S) (e is the specific internal entropy, v is the specific volume, 
p = v-1 is the density, p is the pressure and S is the entropy). The functions e(v, p), g(v,S) 
are defined for O<v<oo, O<p<oo, --<S<w, are sufficiently smooth and satisfy the 
conditions for a normal gas /2/ 

a > 0, Y> 0, g8 > 0, Ye <O, g,> 0, sp> 0 (1.1) 

The last condition is connected with the positiveness of the temperature T (T= e&s). 
In addition we shall assume that the following limit relations hold: 

*%_g (v, S) = 0, liig (v, S) = m, ,'iy e (v, g (v, S)) = 0 
-00 (1.2) 

jle((v,g(v,S))=oo, L$e(u,p)=O 

We note that by virtue of the fundamental thermodynamic identity the functions e(v,p) and 
g,(v, S(v,p)) (where S(v, p) is found from the relations p= g(u,S)) are connected by the 
equation 

e, + &la, + p = 0 (1.3) 
It was shown in /3/ that when conditions (1.11, (1.2) hold, the necessary and sufficient 

condition for the unique solvability of the problem of the collapse of an arbitrary dis- 
continuity (Riemann's problem) for the equations of one-dimensional gas dynamics, reduces to 
the following condition for the functions e,g: 

f > 2ep (pa - 2egJ’ (1.4) 
The inequality (1.4) represents the necessary and sufficient condition of monotonicity 

of the one (p, u)-diagrams of the shock waves, i.e. of the curves in the s, p plane defined 
by the equation 

u - ur = +I(p - p1) (v, - u)l"' (1.5) 
Here u is the velocity of the gas in one-dimensional motion, U1r Pl? Vl are given quantities 

and U= v (p,v,,p,) where the function v (p,v,,p,) is found from the Hugoniot adiabatic equation 

H (v, P, b, ~1) = 0, ff (v, P, 4, PJ = e 64 P) - 8 (4, PJ - 2-l (P + ~1) (vl - 4 (1.6) 

when the following inequality, weaker than (1.4), holds: 

eR > - P (%J1 (1.7) 
In the theory of plane steady flows the shock polars are analogues of the (p,u)-diagrams. 

The same curves appear in three-dimensional unsteady problems describing the interaction between 
a shock wave and a rigid wall /4/ or another strong discontinuity. Let us recall the definition 
of a shock polar in the stationary case. Let w = (zu',~?) be the gas velocity vector in 
stationary plane flow. We introduce the angle 6 by means of the relation tg6 =wa/&. Then 
the relations 

(w - WI)" = (P - Pl) (VI - v) 
q* = ql’ - (P - PI) (Y + 4 (4 = I w I) 

on the strong discontinuity (the lower case index 1 refers to the state before the shock, and 
the quantities without the index to the state behind the shock) yield, as a corollary, the 
equation of the @,p)-polar 

sin (6 - e,) = f [(p - pJ (4 - v - ul*ql* (p - p,)V x 
IP? - (P - PI) (4 + W’* = f (cp (Pt % PI, !71))1’c 

,( 1.8) 

In (1.81, as well as in (1.5)) v = v(p, +pJ, the quantity q1 satisfies the inequality 

Y?> -v,'g~(vr, S,), andwe assume here that condition (1.7) holds. 
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We note the obvious properties of the (8,p)-polar: the curve is defined for (vl-u) Q~%+-~ > 
(p-pr)> O,, its two branches are symmetrical about the ,e = Or axis. Everywhere along 
the curve '1 sin (0 - 6,) I< 1. Indeed, from sin*@ - 6,) = 1 it follows that p - pr = a*ur-r, but 
these values lie outside the domain of definition. Then there exists O*, 0<8,<n/2 such 
that 11 e - 8, I ge,, and the value 8, is attained (the limit angle of rotation of the vector 
w during the passage across the shock). 

We know that in a polytropicgasthe shock polar has the following properties: A- there 
exists a unique value p0 such, that q’ = ql* - (p - pd (v, + 4 > -v’g, (u, S) when P < po, which 
corresponds to supersonic flows behind the front, and go = gr* - (P - $11 0’1 + 4 < -u”g, (u, S) 
when p>po (subsonic flows behind the front); B- any straight line 8 = const, 10 -e8, I <e, 
intersects the shock polar at exactly two points, and the value 6,is attained at a unique value 
of p; c-the quantity IO-&) increases monotonically as p increases on the supersonic 
segments of the shock polar. 

The problem consists of describing a class of equations of state in which the properties 
A, B and C hold for the shock polars. 

Some of the well-known properties of the Hugoniot adiabatic (1.6) will be used in what 
follows. We shall denote by f' the derivative of f with respect to p along the Bugoniot 
adiabatic. When conditions (1.11, (1.2) hold, we have 

-_g, (% 8,) < (P - PI) h - 4-l < -gu (4 S) U.9) 

at points lying on the flugoniot adiabatic (1.6) for p > p1 (Tsemplen's theorem). When. p < pl, 
the inequality signs are reversed. Moreover, 

(1.10) 

The appearance of u’(p,u,,p,) in this formula is due to the fact that, in what follows, 
condition (1.7) is assumed to hold. From (1.6) it follows at once that when p >pl, we have 
along the Hugoniot adiabatic 

Ul - u < 2ep-’ (1.11) 

We note that the functions a and g are connected by the inequality /3/ 

--2%> Pa (1.12) 

If condition (1.4) holds, then the right-hand side of (1.5) is monotonic when p>pl /3/ 

VI - u - u' (P - PI) > 0 (1.13) 

2. Property A. lemma 1. The validity of property A for the shock polar (1.8) with 
arbitrary parameters pl, Vl, q1 (PI > 0, Vl > 0, h2 > -uISgLl (% s (St PI))) is equivalent to the 
strict monotonic form of the function 2i + ca (i = 8 + pv is the specific enthalpy, c = (-u*gv)vS 
is the speed of sound) along the Hugoniot adiabatic with centre at the point (u,,pr)when p>P,. 

Proof. The monotonic character implies property A, since in this case the quantity 

q1* - (P - PI)bI + 4 + hl = h’ + 21, - 21 - 9 

decreases monotonically along the Hugoniot adiabatic as p increases. Let the function 2f+E 
take the same values at the points (I+ p,), (uStp*) of the Bugoniot adiabatic with centre at the 

a point (vI,pl)(p,<pn<pl) where the quantity 21+c does not decrease on the segment [p1,pS-61(8 isa 
small positive quantity)(it always increases strictly for small p-ppl. Let us put ql*=(p,-p,) 

(VI + v*) - &A% s (Q Pnb Since the function increases on the segment [pl. pa-61 and is continuous 
we have 2~ + c*ql* > --ul* (g,),. -We assert that the points (vi,pi)(i= 2,3) belong to the domain of 
definition of the shock polar with such a parameter ql. Indeed, the inequality 

@i - Pl)(V, - Vi)_' < 41'%* = [(Pi - P&J, + 4) - 9 k&l 4-’ 

follows from (1.9). Then we find on the shock polar two "sonic" points and the property A is 
violated. 

Lemma 2. The derivative (2i + c2)' >0 on any Hugoniotadiabatic for pap,>0 if and only 
if the functions e(u,, p) and g(u, S(u,p)) satisfy the inequality 

eP > 
@eg,, + (u - u'&s (25”,)-‘)(P’ + 2%“) 

- P’ - a. + V’PkT (2.1) 
ov 

Note. For the class of equations of state disucssed here condition (2.1) is stronger 
than (1.7) only on the set of points @,A). defined by the inequality 

&w’P - ” + u’g,, F%*rl - u’&v CkJ-’ > 0 2.2) 

(The inequality (2.2) represents the condi%ion of positiveness of the difference of the 
quantities appearing on the right-hand sides of inequalities (2.1) and (1.7)). In particular, 
if for any equation of state p = g(v.8) the set of solutions of the inequality (2.2) is empty, 
then inequality (2.1) holds everywhere by virtue of (1.7). 
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2. Having determined the derivative (al+@) we obtain, by virtue of (1.6), 

(Ul - " + (P - PS w-9 Q, (P, u, PI, h) > 0, aJ (P, “9 Pl, Ul) = (2.3) 

- 48 
v'goo 

e,+v+ 2g 
"VVV (P1- P - 25&J 

0 2 (PI - P - (VI - v) gv) 

equivalent to the inequality (2i+ cay> 0. The first cofactor in (2.3) is positive by virtue of 
(l.l), (1.9), therefore it is sufficient to explain the condition of the positiveness of a. 
Let us fix any point (u,p). The centres (t+,pJ of different Hugoniot adiabatics passing through 
this point lie on the curve Ii= 0. The derivative d@/dpl on H= 0 is positive for fixed v,p 

and O<pl<p by virtue of (1.1)) (1.7), (1.9) and the inequality l- gvduI/dp,<O which follows 
from (1.9), (1.10) (the quantities in (1.10) with and without an index must be interchanged). 
Consequently, for @ to be positive on H= 0 at pi>O, it is necessary and sufficient that 

a@. &O, v+ ~P-l)>O, since when PI = 0, V, = u + 2ep-1 , tD(p,~,pl,u~(pl)) reaches a minimum in p1 on H=O. 
If we write the inequality Q, @, 0, O,V+ 2@)>0 in equivalent form solved for ep, we obtain 
the inequality (2.1). 

3. Property B. Let condition (1.4) hold. 

LenmJzl3. Property B is equivalent to a strict increase in the value of _::;p) for p>pl 

M (p) = VI (p - pJ b, + v - v’ (p - pJ1 Iv1 - u - v’ (p - Al-’ (3.1) 
along the Hugoniot adiabatic with centre at the point (v,,pl). 

ProOf. Differentiating (1.8) we obtain 

dq (1 - .1q;r (P - PI))@1 - u - u’ (P - PI)) 
dp= (9: - (P -. pw1+ G)* 

rq; - A+f (P)l 

The monotonicity of M@) implies the property B, since cp'= 0 at a unique point of the 
shock polar. Let I take the same values at the points (v., p,),.(v,,p~) of the adiabatic (1.6) 

(Pa< Pt < Pa)* If M'(p)>0 everywhere, then M@)==const for pe&,pJ, however if a point exists 
at which M'@)<O, then p, can be chosen so that M'@r)<O and the point p, will be close to pa 

where [pI,pJ is the largest segment on which M'(p)),O. We note that the inequality M’(p)> 0 
is equivalent, by virtue of (3.1), to 

2v (P - Pl)‘O” + (u, -I; v - v’ @ - Pl)) (y - v + u’ @ - PI)) > 0 (3.3) 

therefore M'(p)>0 near the point p,. Let us write ql*= it4&). Then q,*>M(p,)= -v,a(gm), since 
the points pa and p, are near each other. The points (I+ pJ and&, ps) belong to the domain of 
definition of a shock polar with ql such, that 

Pi - Pl 
-= 

“1 - “i -_ ” (Pi)(Pi - PI) ql’ 
fJ1 - u, “l+“iiu’(P~)(Pi-Pl) Y(vl-vJ 

<-$, i-2,3 

by virtue of (1.10). Property Bisviolated in the case of a shock polar with such a parameter 

&- In the first case we have 113-1&l= 13. on the segment ]p,,p,], and in the second case the 
derivative cp' changes its sign at least three times. Since M'(p,)<O, we can find ps< p,<p~ 
such that A4 (ps) > ql* 7 M (~3, but when @ - p&l - v)-‘* ql*u14 , we have M (p)> ql'. 

Lemma 4. The inequalities (a) or (b) are sufficient for (3.3) to hold 

(a) 8<e<xa, B<4pa,g,(xa--)(pa+ 2eg,)-l 

(b) o \< 0, B d 4PX (g&x - pa) (P* + 2eg,)-’ 

(a = e,grSgS-l + Z-l, j3 = e, - e,g,Bg8-1, x = efl,p-l+ 2-l) 
Proof. The inequality (3.3) can be transformed, by virute of (1.3), (1.6), to the 

equivalent form 
N = (PI-P + go (v - Q)&H,, (h+ I) Hll -I- (P - PI) =,) + (3.4) 

0 (P - ~d's,~rPl+ 2~ (P - PI)‘~~B~‘&,> 0 

NJ = 2-l (PI - p + g_ (v -- h)) B + (Pl - P - 2&e,) a 

Since (01 + 0) H, + 0, - pl) H, > 2vHo > 0, the inequality (3.4) holds for a<O,@<O (when we 
have qpO0). We have the following relation along the curve (1.6) for fixed v,p and varying 

4, Pl : 
d’bldpl = Q +2-a ( 1 - aWdpd b 

Repeating the arguments of Sect.2, we conclude that when fJ>O,a<O., the maximum value 
of 9 is attained when p1 = 0, u1 = V+ 2ep-1, and for a>0 when p,= p, u1 = U. If a>O,b.>O, then 
we have 

9 < --2'(2g&++ P) B - 2wpa 
Inequality (3.3) will hold if 
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%N + (6W1 mar Q Z 0 
Ft 

(W 

since ab ((u, + V) a, + (p - p,) HE) 7 zvx,= 7 2vv*pk 
Using the estimates obtained fox Q we obtain, from (3.5), the sufficient conditions a) 

and b). 
We Can obtain the sufficient condition for the property B not to hold. It reduces to 

the requirement that IJ be negative when pr 25 0, 0, = v+ 2s~~' for some r, p. 

4. Property C. Lema 5. Let the condition formulated in Learna 2 hold. Then property 
C is equivalent to the inequality 

(P 4 %%I ep + PYQ 0 (4.~1 
Proof. The inequality et70 is equivalent, by virtue oftheformula (3.2), to 

I%* - (P -P&z + 0) + &&J, - y - u' e - Pl)) + 
vHXl-'l (P - Pt + & (Q, - U))i(P -PI + G%) ep f y (P - &)I > 0 

(4.2) 

The sufficiency of the condition (4.1) for a monotonic increase in lt)-e,on the super- 
sonic segment of the shock polar follows from (4.2). Indeed, when the inequality (4.1) holds, 
the quantity eP also satisfies inequality (1.4). Then inequality (1.13) holds and the first 
term of (4.2) is positive on the supersonic segment of the polar. The positiveness of the 
second term is ensured by the inequalities (1.7), (1.9), (4.1). 

We shall now prove the necessity. Let (u,,pp) (P + ugs) 8,+ UP > 0 at some point. We draw 
through this point a Hugoniot adiabatic and choose on it a point (+pl) for sufficiently small 
pa, so that 

((PO - Pl + % k?&)(ep), + 3 (PP - PI) > 0 (4.3) 
Let us write ql* = (pr -p&g + uJ - 3 (g& Then the point (vn,pr) will belong to the domain 

of definition of the shock polar with parameters +p,,ql (as in Sect.2). By virtue of Lemma 
2, the segment of the polar with p ~Ip~,p~) is supersonic, but we have cp'<O near the point pn_ 
This violates property C and completes the proof of the lemma. 

Note. The monotonic increase in 113-9~1 as p increases on the supersonic segments of 
the polar is ensured only by inequality (4.1) (the conditions of Lemma 2 are not used). 

As a result we obtain, for the class of general equations of state of a gas satisfying 
the condition (1.11, (1.2), (1.71, additional conditions equivalent to satisfying the properties 
A and C for the shock polars in such a gas (Lemma 2 and 5), and sufficient conditions for 
the property B to hold (Lenrma 4). 

In connection with the use of shock polass (1.8) in computing the reflections and inter- 
actions of shock waves, we can utilize the conditions obtained for a quantitative description 
of the processes in specific media, For example, if the equations of state of the medium 
are such that condition (2.1) is violated in some domain of variation of the state parameters, 
we shall observe, for certain parameters of the flow impinging on the oblique shock, alterna- 
tion of the supersonic and subsonic modes of flow behind the shock , with the pressure increas- 
ing behind the shock, In a gas with equations of state satisfying the conditions of Lemma 4, 
the problem of homogeneous supersonic flow past a wedge 151 can have not more than two 
solutions, just as in the case of a polytropic gas. When the inequality converse to (3.3) 
is satisfied at the point of some Hugoniot adiabatic, the problem of flow past a wedge can have 
three or more solutions. 

If the equations of state of the gas do not satisfy condition (4.1), then in some domain 
of the parameters it will be possible for the angle of rotation of the velocity vector in 
the oblique shock to attain its limit value when the flow behind the shock is supersonic, 
while in a polytropic gas the limit angle is attained when the flow behind the shock is 
subsonic. The proofs of the lemmas show how equations of state can be used to determine the 
parameter domains in which properties A, B and C are violated. 

The possible geometrical forms of the shock polars in general two-parameter media were 
studied in 16~'. The properties of the shock polars were juxtaposed in /6/ with the correspond- 
ing properties of the Hugoniot adiabatics and with the conditions of the stability of the 
shock waves. At the same time, other Hugoniot adiabatics were considered which did not 
project uniquely on to the p axis (violation of condition (1.7)), or did not have the star 
property relative to the centre (violation of (1.10)). It was also noted that the appearance 
on the Hugoniot adiabatic of two or more points of inflection may lead to violation of 
property C. This agrees with the conclusions of the present paper (see Lemma 3) which deals, 
basically, with the description of a class of two-parameter media with "normal" properties 
of the shock polars. 
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ON NON-ONE-DIMENSIONAL SELFSIMILAR SOLUTIONS WITH 
PLANE WAVES IN GAS DYNAMICS* 

S.A. POSLAVSKII and I.S. SHIKIN 

A set of new exact selfsimilar solutions is obtained, describing non-one- 
dimensional adiabatic motions of an ideal gas with plane waves. The 
solutions show a uniform expansion of the gas in planes perpendicular to 
the direction of the basic motion. The system of equations of gas 
dynamics is reduced for these solutions to a system of ordinary differential 
equations /l/. Problems of a short shock and the propagation of a strong 
detonation wave in a uniformly expanding gas was solved numerically in 
/2/, where an exact solution was also found for the problem of a short 
shock for a special value of the adiabatic index. 

1. Let us consider the adiabatic motions of an ideal gas whose parameters are given by 
the formulas 

Here r[ are rectangular Cartesian coordinates (s, = r). The velocity components along the 

2, x1 axes are denoted by v, vi, and the index i takes the values 2 and 3 (there is no 
summation over i). The motion (1.1) is assumed to be either two-dimensional (fi = 1, e,(l) = 1, 
e,(l) = 0, v, = z,lt, vII = 0), or three-dimensional 2 e,(*) = 1, 
The constants a and b are of dimensions [al = &&=Ibi = LT+. 

es(*) = 1, up = x,/t, v, = x3/t). 

The system of equations of gas dynamics reduce:, for such motions, to the following system 
of ordinary differential equations in the variables z(r)= VP/R, V(r), R(z), 7 = In 1 h 1 /l/: 

(Y 

dz/dV = z {z I2 - x (y - 1) - 2Vl + I(? + 1) v - 2 + fi (7 - 
l)l(V-6)‘- (y- l)V(V-l)(V- 6)}(V- 6)-1x 

(1.2) 

Iz (x - p - V) + v (U - 1) (V - 6)1_’ 
V’ = Iz (x - fJ - v) + v (V - 1) (V - S)l Iz -(V - fi)q-’ 
R’ (V - 6) = R Is - fi,+ (k + 2) V - V’] 

x = Is + 2 + 6 (k + I)1 y”’ 

is the adiabatic index Y > 1). 
The last equation of (1.2) can be replaced by the adiabaticity integral /2/ 

PR-V = const IR (V - S)IEhq 

E = 2 - (v - 1) 8 + 6 tk + 1 - Y (k + 3)l 
s-b+t-((k-f2) 9 

rl=_ (v + 1) 8 + 2 (k + 2) + B [k + 1 -Y (k + 3)l 
s-B+6@+% 

The relations on the shocks are written just as in thecase of one-dimensional selfsimilar 
motions /3/ 

Rr(V, - 6) = R, (V, - 6) (1.3) 
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